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Ahigh-integrity application is one whose
failure would cause unacceptable

costs, or for safety-critical systems, create
risks to human health or life. Examples of
high-integrity applications include aircraft
avionics, weapons systems, and shipboard
control. Business-critical software can also
qualify as high-integrity if a failure could
cause significant economic damage,
expose confidential data, or have other
similar consequences. Developing such
applications presents difficult challenges.
The programming language chosen has an
important effect based on how well it
meets the following requirements:
• Reliability. The language should sup-

port the development of programs
that can be demonstrated to work cor-
rectly and should help in the early
detection of errors in programs. This
may sound obvious, but the various
goals that a language design seeks to
achieve (ease of writing, run-time effi-
ciency, expressive power) can some-
times involve a trade-off with program
reliability.

• Safety. Although related to the goal of
reliability, safety is worth noting as a
separate requirement. Informally, safe-
ty in a programming language means
being able to write programs with high
assurance that their execution does not
introduce hazards (i.e., the system does
not do what it is not supposed to do).
This translates into language require-
ments related to program predictabili-
ty and analyzability in order to allow
the system to be certified against safe-
ty standards such as Document Order
(DO)-178B [1]. For example, the
developer must be able to demonstrate
that run-time resources (such as stack
space) are not exhausted [2].

• Expressiveness. High-integrity appli-
cations fall across a variety of domains
(real-time, distributed, transaction-ori-
ented, etc.) and the programming lan-
guage or its associated libraries must

provide the appropriate functionality.
For example, a real-time system gener-
ally comprises a set of concurrent
activities (either time or event-trig-
gered) that interact either directly or
through shared data structures. It must
be possible to express such functional-
ity with assurance that deadlines are
met and that shared data are not cor-
rupted by simultaneous access.

This article focuses on how Ada 2005 [3,
4] offers enhancements in each of these
areas. The emphasis is on new capabilities,
but there is also a brief mention of Ada’s
existing support for these requirements.
Although the reader might not be familiar
with Ada, general programming experi-
ence with a language such as C, C++, or
Java is useful, and some sections assume
acquaintance with specialized topics such
as object-oriented programming (OOP),
multi-threading, and real-time scheduling.
An introduction to OOP in an Ada con-
text can be found in John Barnes’ Ada 95
Rationale [5]; a comprehensive treatment
of concurrency and real-time issues and
approaches is provided in [6].

Reliability
Reliability as a language design goal
implies support for software engineering.
This indicates a prevention of errors with
detection at compile time if possible and
avoidance of pitfalls where a program
does something other than what its syntax
suggests. Ada’s design was based on these
principles. Specific features include strong
typing, checks that prevent buffer overflow,
checks that prevent dangling references (i.e.,
references to data objects that have been
reclaimed), a concurrency feature (pro-
tected objects) that offers a structured and
efficient mechanism for guaranteeing
mutually exclusive access to shared data,
and an exception handling facility for
detecting and responding to deviant run-
time conditions such as improper input
data. Ada 2005 enhances this support in

several areas:
• OOP. One of the essential elements

of OOP is inheritance. A new class (the
subclass) is defined as a specialization
of a parent class (the superclass), and
methods from the superclass are
either explicitly overridden or implicit-
ly inherited. However, misspelling a
method name when defining a new
subclass or adding a new method
when revising an existing superclass,
may introduce hard-to-detect bugs
unless the language provides appropri-
ate features. For example, inheriting
from a class that defines a method
named Initialize, and attempting to
override it but misspelling the name as
Initialise, results in the unintended
implicit inheritance of the superclass’
Initialize method. Dynamic binding to
Initialize will invoke the superclass’
version of the method, which is not
what the programmer expected. As
another example, adding a method to
a superclass when a subclass already
has a method with the same name and
parameter types causes the subclass’s
method to override the superclass’s
method. This, too, causes unexpected
effects on dynamic binding. Ada 2005
introduced new syntax that a pro-
grammer can use to detect both kinds
of errors at compile time. This is
more reliable than C++ (which lacks
any mechanism) and Java (which pro-
vides an annotation that can detect
unintended inheritance but does not
have a means to detect unintended
overriding).

• Read-oonnllyy parameters. Ada’s ap-
proach to subprogram formal parame-
ters, unlike most other languages,
encourages the programmer to think
in terms of logical direction of data
flow rather than physical implementa-
tion (by copy or by reference). Thus,
Ada has always supplied the in parame-
ter mode, corresponding to data being
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passed from the caller to the called
subprogram. Assignment to an in para-
meter is prohibited. Even if the imple-
mentation passes the actual parameter
by reference, the object that is passed
cannot be modified through an assign-
ment to the formal parameter. This is
extremely useful in ensuring the
absence of unwanted updates since
the compiler would detect such
attempts as errors. However, the Ada
95 mechanism for so-called access para-
meters, which allowed passing a point-
er to a declared data object (analogous
to * parameters in C) did not include a
way to protect the referenced object
from being modified. That gap is now
filled, with the ability to specify sub-
program parameters as pointers to
constants. The called subprogram may
use the formal parameter to read the
value of the referenced object but not
to perform assignments to the object.
This capability is not new in program-
ming languages (it is available in C and
C++, for example, through the * const
syntax), but it is lacking in Java, which
provides no mechanism for constrain-
ing a method to have read-only access
to the object denoted by a parameter.

• Assertions. Ada 2005 has introduced
a compiler directive – pragma Assert –
through which the programmer can
specify a logical condition that is
known to be true. In its simplest form,
it appears as pragma Assert (expr)
where expr is an expression that
returns a Boolean result (i.e., either
True or False). When control reaches
the point in the program where the
pragma appears, expr is evaluated. If it
is True, then execution continues nor-
mally. If it is False, then the
Program_Error exception is raised and
standard exception handling/propaga-
tion semantics apply. This pragma was
implemented by several Ada 95 ven-
dors and produced enough general
interest to be incorporated into Ada
2005. It provides a convenient and
readable notation for specifying many
kinds of pre-conditions, post-condi-
tions, and invariants, thus facilitating
static analysis and formal reasoning
about programs.

• Avoidance of race conditions dur-
ing system initialization. If a pro-
gram uses concurrency features
(known as tasks in Ada), there are
potential problems at program startup
if, for example, a task reads the value
of a global variable before the variable
has been initialized. Such a hazard is
traditionally known as a race condition. A

new compiler directive in Ada 2005,
pragma Partition_Elaboration_Policy,
allows the programmer to prevent this
problem by deferring task activation
until after data initialization.

• Avoidance of silent task termina-
tion. This hazard in high-integrity sys-
tems – the implicit termination of a
task because of an unhandled excep-
tion or an abort – has been addressed
in Ada 2005 with a new mechanism
for setting user-defined termination
handlers. Such a handler is invoked
when the associated task is about to
terminate. This allows a controlled
response at run-time, for example,
keeping track of such events for post-
mortem analysis.

Safety
Although DO-178B was originally devised
as guidance for commercial aircraft devel-
opers, it is applicable more generally on
any system where high confidence in cor-
rectness is required, and it is being cited
increasingly on defense software projects.
The document, comprising a set of 66
guidelines, focuses on the soundness of the
development process and has a particular
emphasis on testing as a verification tech-
nique. DO-178B, though largely silent
about particular languages or language
features, implies several requirements that
relate to programming language issues:
• Predictability. The time and space

demands for the system must be pre-
dictable. It is unacceptable to miss the
deadlines of safety-critical tasks or to
exhaust stack space or dynamic mem-
ory.

• Analyzability. The code must be stat-
ically analyzable, both by humans and
by software tools. This is needed to
support traceability (each software
requirement must be traceable to code
that meets that requirement, and all
code must be traceable back to a
requirement that it meets) and struc-
tural coverage analysis.
Unfortunately, these requirements

conflict with other important goals such
as expressiveness and maintainability. The
following are examples of conflicts:
• Dynamic features. Many modern

programming languages, including
Ada, have features such as exception
handling and concurrency that offer
considerable generality, but at the price
of run-time libraries that are too com-
plex for safety certification. For com-
pliance with standards such as DO-
178B, simple features work best.

• Object-oriented programming. The
use of OOP in safety-critical systems

is a subject that has been attracting
considerable attention in recent years
and is addressed in detail in the multi-
volume handbook, Object-Oriented
Technology in Aviation [7], evolved under
the auspices of the Federal Aviation
Administration and National Aero-
nautics and Space Administration.
Two essential characteristics of OOP
are polymorphism (the ability of a vari-
able to reference objects from differ-
ent classes at different times) and
dynamic binding (resolving a method call
based on the class of the object that
the method is invoked on). But poly-
morphism implies pointers and thus
dynamic memory management, which
interferes with predictability. Dynamic
binding implies not knowing until run-
time the method invoked, which inter-
feres with analyzability.
Ada 2005 addresses these issues in sev-

eral ways:
• Language profiles. With the excep-

tion of specialized languages such as
SPARK [8], which was specifically
designed for safety-critical and securi-
ty-critical systems, it has always been
necessary to define language subsets,
or profiles, in order to ensure certifi-
able run-time libraries and pre-
dictable/analyzable application code.
The question has been how such sub-
sets have been defined. Ada 95 intro-
duced a compiler directive, pragma
Restrictions, which gave this control to
the programmer. The programmer can
use this pragma to specify exactly
which features are needed, thus defin-
ing a profile in an á la carte fashion. Ada
2005 extends this mechanism with an
additional directive, pragma Profile,
that allows the formalization of a spe-
cific set of features under a common
name (this is the way in which the
Ravenscar profile, discussed next, has
been formalized). In brief, the Ada
design recognizes the reality, described
in an International Organization for
Standardization report [9], that there is
no such thing as the safety-critical lan-
guage profile; rather, there are differ-
ent profiles based on the analysis tech-
niques that are used in certification.
For safety-critical systems, Ada 2005
can be regarded as a family of lan-
guage profiles, with the precise set of
features in any given profile defined by
the application programmer.

• Ravenscar profile. Named for the
venue of a workshop where it was first
defined, the Ravenscar profile [10, 11]
is a set of Ada tasking features that are
powerful enough to be used for real-
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world applications but simple enough
to be certifiable against standards
such as DO-178B. A program that
adheres to the Ravenscar profile com-
prises a set of tasks; each task is
defined as a loop with a single point
where it may be blocked waiting for a
timeout or an event. This style
straightforwardly expresses a periodic
task or a task that handles asynchro-
nous events such as keyboard input or
messages from external devices. More
general tasking features (such as task
abort and asynchronous transfer of
control) that would complicate safety
certification are prohibited. A major
advantage of the Ravenscar profile is
that it allows a program to be
expressed naturally as a set of tasks, a
design that directly reflects the system
requirements and is easy to maintain.
The traditional alternative is the cyclic
executive style, which is brittle in the
presence of maintenance changes.
Ada 2005 has incorporated the
Ravenscar profile into the language,
thus making it a formal part of the
standard.

• Safe OOP. Ada’s OOP model offers
several benefits in connection with
safety certification. First, as noted ear-
lier, Ada 2005 has introduced syntax
that helps avoid some subtle OOP
errors in connection with inheritance.
Second, it is possible, especially
through pragma Restrictions, to avoid
using OOP features that could inter-
fere with analyzability. For example,
the programmer can safely use tagged
types (classes), encapsulation, and
inheritance, but avoid dynamic bind-
ing. Third, Ada 2005 has extended
Ada 95’s OOP model to include Java-
like interfaces, thus making it easier to
express multiple inheritance without
needing complicated idioms. Finally,
automated program transformations
are possible that convert a program
using dynamic binding to an equiva-
lent version that uses more traditional
constructs. If such a tool is qualified
(in the DO-178B sense) then the ana-
lyzability concerns mentioned here in
connection with dynamic binding
would be addressed.

• Safety-oriented pragmas. Ada 2005
introduces several pragmas that are
relevant to safety-critical programs.
Pragma Unsuppress can be used to
locally enable language-defined
checks, thus overriding the effect of a
pragma Suppress that may have been
applied as an optimization. Pragma
Unsuppress is useful in algorithms

that depend on the raising of a prede-
fined exception. Pragma No_Return
identifies a procedure that never
returns to the point of call; it either
loops forever (for example, a main
routine in a process control system) or
else always raises an exception (for
example, to indicate detection of
some abnormality at run-time). This
pragma may be useful for some static
analysis tools.

Expressiveness
Many high-integrity applications are real-
time systems, requiring language features
or libraries that support concurrency and
the expression of periodic (time-trig-
gered) as well as aperiodic (event-trig-
gered) activities. A particularly important
consideration is the management of prior-
ity inversion, a situation in which a lower-
priority task prevents a higher-priority
task from running. Some priority inver-
sions are necessary, such as when a high-
priority task needs to be blocked because
it is trying to access a shared object that is
currently being used by a lower-priority
task. The key is to predict the maximum
blocking time for each task and to mini-
mize this bound so that deadlines can be
guaranteed and available processor capac-
ity can be exploited.

These needs are actually well met by
the Ada 95 tasking model, which intro-
duced several important constructs:
• Standard task dispatching policy.

Ada 95 formalized a traditional fixed-
priority scheduler, basically run until
blocked or pre-empted, with tasks at a
given priority level serviced in first-in
first-out (FIFO) fashion.

• Protected objects. The protected
object mechanism captures the notion
of an encapsulated object (preventing
direct and thus error-prone access to
state data) with mutual exclusion and
condition synchronization. The typi-
cal concurrency pattern of multiple
tasks interacting through a shared data
object (where a task might need to not
only acquire a mutually exclusive lock
on the object, but also wait until the
state of the object satisfies a particu-
lar condition) can be expressed clear-
ly, reliably, and efficiently through a
protected object and its operations.

• Ceiling locking policy. With the
ceiling locking policy, a task perform-
ing an operation on a protected object
will inherit the priority that is defined
as that object’s ceiling. This policy
minimizes priority inversions, and
with Ada’s semantics for non-block-
ing protected operations, it prevents

certain forms of deadlock.
Ada 95 is especially well suited to off-

line (pre-runtime) schedulability analysis,
which allows the developer to predict
whether all deadlines will be met.
Building on Ada 95’s foundation, Ada
2005 extends the language’s support for
real-time systems. The following is a sum-
mary of the most prominent new fea-
tures:
• Dynamic ceilings. In Ada 95, the

ceiling priority of a protected object
must be set at compile time. Ada 2005
is more flexible and allows a ceiling to
be changed at run time. This is useful
when the ceiling must reflect a chang-
ing set of task priorities, for example,
due to mode changes such as the transi-
tions among the takeoff, cruise, and
landing modes for aircraft.

• Non-pre-emptive scheduling. In
some environments, especially for
high-integrity systems, the complexity
and overhead of pre-emptive schedul-
ing are not desirable, and the applica-
tion is prepared to pay the cost of
higher latency (less immediate
responses to events). Ada 2005
accounts for this need with a new task
dispatching policy where a task will
run until it either blocks itself (for
example, by executing a delay state-
ment) or completes.

• Round-robin scheduling. This tra-
ditional policy is useful when there is
a need for fairness in task scheduling.
Ready tasks at the highest priority
level are time-sliced at a user-specified
interval. This is still a fixed-priority,
pre-emptive policy; low-priority tasks
are not implicitly bumped in priority
based on how long they have been
pre-empted. Round-robin scheduling
may be summarized as run until blocked,
pre-empted, or time-slice expiration.

• Earliest deadline first (EDF)
scheduling. EDF scheduling in Ada
2005 is a dynamic-priority policy in
which deadlines and not just priorities
are used to dictate which ready task is
given the processor. A priority range
can be assigned to be governed by the
EDF policy. EDF is useful for maxi-
mizing system responsiveness, but is
less predictable than fixed-priority
policies in the presence of overload.

• Multiple scheduling policies. Ada
2005 allows different compatible poli-
cies to coexist for the same applica-
tion. This is done by associating task
dispatching policies with specific pri-
ority levels. For example, the applica-
tion can reserve a range of low prior-
ities for non-real-time tasks that will
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be governed by round-robin schedul-
ing and higher priorities for real-time
tasks that require pre-emptive sched-
uling that is FIFO-within-priorities.

• Timing events. Ada 2005 provides a
lightweight mechanism for defining
asynchronous, time-based events with
associated handlers.

• Group budgets. Classical scheduling
theory deals with aperiodic tasks by
grouping them together as a concep-
tual periodic task with a total budget
that is replenished each period; the
period is based on the interarrival
times of the aperiodic events that the
tasks are handling. This functionality
can be implemented in Ada 2005
through a group budgets package that
allows a user-specified handler to run
when the budget has been depleted.

• Execution time monitoring.
Schedulability analysis depends on
the correctness of the values provid-
ed for task cost (execution time),
deadline, and period. This raises the
issue of the effect when a task
exceeds its cost budget. Ada 2005
addresses this issue through a pack-
age that allows tracking of central
processing unit time on a per-task
basis that also provides user-defined
handling of cost-overruns.
In addition to these real-time orient-

ed enhancements, Ada 2005 offers a
number of other features that increase
the language’s expressiveness. It is out-
side the scope of this article to cover
these in-depth but the following are
some brief examples of the new features
that may be of use in high-integrity
applications:
• More flexible program structuring.

Ada 2005 allows interdependent pack-
age specifications, making it easier to
model and interface with class
libraries as defined in languages such
as Java.

• Unification of concurrency and
OOP. Ada 2005 introduces the con-
cept of a Java-style interface that can
be implemented by either a sequential
or tasking construct, providing a level
of abstraction that is not found in
other languages.

• New libraries. Ada 2005 adds con-
siderable functionality to the prede-
fined environment. There are new
packages, for example, for vectors and
matrices, linear algebra, and 32-bit
character support. A comprehensive
containers library provides facilities
somewhat analogous to the C++
Standard Template Library. The defin-
ition of high-integrity versions for

some of these libraries is in progress.
• Improved interfacing. Ada 2005

extends Ada 95’s interfacing mecha-
nism, making it easier to construct
programs that combine Ada code with
modules from C, C++, or Java.

Conclusions
High-integrity software can, in principle,
be written in any computer language, but
the effort will be simplified by choosing
an appropriate language – one that is
designed for reliability and safety with
expressiveness to capture a broad range
of applications including real-time sys-
tems. Both the original Ada language and
the Ada 95 revision meet these require-
ments, and Ada 2005 has continued in
this vein. Among its enhancements are
safer OOP, a certifiable tasking subset
(the Ravenscar profile), a way to ensure
that pointed-to parameters are read-only,
a standard feature for defining language
profiles, mechanisms for avoiding hazards
such as race conditions at system startup
and silent task termination, and a variety of
new task dispatching policies that are rel-
evant for real-time systems. Importantly,
Ada 2005 is real: commercial implementa-
tions are in progress, including one that is
available at present. Ada 2005 is also at
the forefront of real-time study in acade-
mia, both influenced by and inspiring
research on concurrency, scheduling theo-
ry, and related real-time subjects.

Ada has always been an attractive lan-
guage for high-integrity and safety-critical
systems. Advancing the state of the art,
Ada 2005 is continuing this tradition and
promises to see expanded usage and inter-
est based on its many valuable enhance-
ments.u
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